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A computational setting for the Immersed Boundary Method employing an adap-
tive mesh refinement is presented. Enhanced accuracy for the method is attained
locally by covering an immersed boundary vicinity with a sequence of nested, pro-
gressively finer rectangular grid patches which dynamically follow the immersed
boundary motion. The set of equations describing the interaction between a non-
stationary, viscous incompressible fluid and an immersed elastic boundary is solved
by coupling a projection method, specially designed for locally refined meshes, to
an implicit formulation of the Immersed Boundary Method. The main contributions
of this work concern the formulation and the implementation of a multilevel self-
adaptive version of the Immersed Boundary Method on locally refined meshes. This
approach is tested for a particular two-dimensional model problem, for wioisig-
nificant differenceas found between the solutions obtained on a mesh refined locally
around the immersed boundary, and on the associated uniform mesh, built with the
resolution of thdinest level @ 1999 Academic Press

Key Wordsincompressible flows; interface problems; mesh refinement; projection
methods; immersed boundary method.

1. INTRODUCTION

Many problems in biofluid dynamics involve the interaction between a non-stationa
incompressible viscous fluid and a visco-elastic biological tissue, which may have tin
dependent configuration, time-dependent elastic properties, or both (e.g., the interac
between blood, heart muscles, and heart valve leaflets). Although these problems ce
handled in a robust manner by tiramersed Boundary Methaahd qualitatively good
results be obtained [10, 14, 15, 27-29, 32, 35], this method suffers from a certain “lac}
resolution.” Thin boundary layers, which usually develop along the biological tissue, and f
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geometrical details can be adequately resolved only if the computational mesh is very fin
a uniform mesh is used, this requirement is inevitably extended to the entire computatic
domain, and the resulting mesh may exceed the storage capacity of the computer.

This accuracy issue introduced by localized phenomena around some kind of inter
is common to many problems, arising in many different fields. In the past few years, mt
effort was spent to have this issue appropriately addressed and, as a result aeasnad
methodsvere introduced.

Employing a very particular approach, Li[22, 23] and LeVeque and Li [20, 21] develop:
the Immersed Interface Methpdiesigned to solve problems with non-smooth solutior
across interfaces. The method adapts the finite difference scheme in a neighborhood ¢
interface to obtain an equally accurate solution at all points on a uniform Cartesian g
The main idea is to incorporate the known jumps in the solution or in its derivatives acrt
the interface into the scheme, obtaining a modified scheme close to the interface.

Level set methods, in combination with adaptive mesh refinements, were considere
Haj-Hariri, Shi, and Borhan [17], who studied the three-dimensional motion of deformat
viscous drops, and by Sussnetral.[36, 37], who studied incompressible two-phase flows
with surface tension, two-dimensional axisymmetric and fully three-dimensional air bubb
and water drops.

In the context of gas dynamics, Bayyuk, Powell, and van Leer [3] introduced a mett
for performing simulations of Euler flows around moving and deforming bodies in two ¢
mensions; their method employed Cartesian, unstructured, quadtree-based grids and 1
volume conservative discretization. Greenoegl.[16] presented an interface-capturing
method coupled to a local mesh adaptive refinement for solving compressible multifl
equations in complex geometries.

More recently, in the context of unsteady, incompressible flows, Agresar [1], and Agre
et al. [2] performed simulations of moving and deforming circulating cells, tracking e»
picitly cell interfaces employing the Euler—Lagrangian method developed by Unverdi a
Tryggvason [39], while solving the fluid equations on the adaptive, unstructured Cartes
grids of Bayyuk, Powell, and van Leer [3].

Still in the context of unsteady, incompressible flows, Roma [34] introduced a ne
computational setting for the Immersed Boundary Method employing a hierarchical, nes
adaptive mesh refinement[6—9, 33]. Inthis approach, accuracy enhancement can be acr
by covering locally an immersed boundary vicinity with a sequence of nested, progressi
finer rectangular grid patches which dynamically follows the immersed boundary motic

Here, thisadaptive versionfthe Immersed Boundary Method is presented, and amore e
ficient dynamical strategy for recomputing the locally refined meshes introduced. Sectic
presents the fluid—interface interaction equations for the model problem to be conside
Section 4 explains how locally refined grids are generated and updated, while Sections
and 6 present the discretizations of the equations in time and space on these grids. Sec
highlights the numerical scheme employed to solve the discretized set of equations fol
specific model problem considered, and Sections 8 and 9 present the numerical result:
the conclusions, respectively.

2. STATEMENT OF THE PROBLEM

Consider a two-dimensional incompressible fluid which contains an immersed boul
ary (immersed elastic interface supposed to be infinitely thin and massless). Using
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Immersed Boundary Method formulation, one can write the equations of motion of t
system composed of the fluid and the immersed boundary as

ou E:ﬁAu—u-VujLE Q)
ot P o P
V.u=0, (2)
where
F(x,t) = / f(s,t)§(x — X(s,1))ds 3)
S
_A(TT)
f(s,t) = 35 (4)
with
9X(s, 1) = / u(x, 1) 8(x — X(s, 1)) dx. (5)
at Q

In (1)-(2), the physical parametessand ., assumed to be constants, are respectively tt
mass density and the viscous coefficient of the flpid; the hydrodynamical pressureis
the fluid velocity, andr, which usually would be an external force field, in this context rep
resents the singular elastic force distribution (3), differing from zero only on the immers
boundary pointsX(s, t), whered(-) is the two-dimensional Dirac delta, u, andF are
functions of the time and of theEuleriancoordinatex, which is defined on a rectangular
domain.

The elastic force densifys, t) in (4), defined along the immersed boundary, is a functiol
of the unit tangent to the immersed boundary,

aX/ds

T = Jox/as|” ©)

and of the immersed boundary tensibywhich will be introduced for a special case below.
Although the derivation of (4) will not be included here, it can be found in [28].

The shape of the immersed boundary may be quite complicated and its motion not kn
in advance. Since the elastic force distributiois computed from the configuration of the
immersed boundary, the position of each one of its poi(s t) must be tracked in a
Lagrangianfashion, withs € Sthe Lagrangian parameter. As a result of the fluid viscosity
one has (5), which states that the immersed boundary points move at the local fluid velo

The set of equations (1)—(6) is given in a mixed Euler—Lagrangian formulation. As
special case, consider the model problem given by a simple, closed curve for which

T t)=To

BXSt
88(7)’

: (7)

whereTy is a non-negative constant, asnd S, S = [0, 2], with the points = 0 identified
with the points = 2.

Note that, in order to have the problem completely posed, one has to provide an in
condition for the systeniX, u) and a boundary condition far. To simplify the problem,
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FIG. 1. Grid lines (left) and grid patches (right).

periodic boundary conditions farwill be adopted. The initial state of the system will be
provided later.

If To is equal to zero in (7), the immersed boundary will not be elastic and it will b
carried passively by the fluid. On the other handT{fis greater than zero, the problem
is the two-dimensional analog of an elastic spherical balloon, filled with the same fit
present outside, whose motion is driven by the elastic force acting on its wall. In this ce
the immersed boundary tends to shrink to a point but it is prevented from doing so by
incompressibility of the fluid. Also, because of the fluid incompressibility, the immerse
boundary equilibrium configuration is a circle that encloses the same area as its in
configuration.

Considering (4) and (6)—(7), one can write the elastic force density for this model probl
as

32X (s, t)

fsh) =To—

®)
Equations (1)—(5) can be naturally divided into two groups: oneNdnder—Stokes equa-
tions (1)—(2), describing the motion of the incompressible viscous fluid, and the otf
one, thefluid-boundary interaction equation8)—(5), describing the interaction between
the fluid and the immersed boundary. The next sections present a discretized form of tl
equations for the model problem introduced, which will be solved numericatpomposite
gridslike the one in the Fig. 1.

3. DISCRETIZATION IN TIME

3.1. Navier-Stokes Equations

The numerical solution of the Navier—Stokes equations on composite grids will be co
puted by a projection method inspired by the projection method introduced by Bell, Cole
and Glaz [5], and by the approximate projection on locally refined grids developed
Minion [25], both second-order variations of Chorin’s original projection method [11, 12

The temporal discretization of the Navier—Stokes equations (1)—(2) is based on a Crza
Nicholson type of scheme where first the advection—diffusion equation is solved to obta
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provisional velocity field, which is then projected onto the space of discretely divergen
free vector fields (up to a given convergence tolerance).
The starting point is the equations

n+3

) Ll e ()
0

untl _gn N Vpn+% B EA<un+l_i_un
At P 0 2

V.u"l=o0. (10)

The superscripts denote instants of time, &i= u(-, t"), F"*%2 = F(., t"*1/2) where
t" =ty + nAt andt™2 =to 4+ (n + %)At. To simplify the problem, only boundary condi-
tions of periodic type are being considered for the velogity

Usually, in the Crank—Nicholson scheme the nonlinear advection tetfAtf would
be obtained by the average of its value at the titfeandt"+. Bell, Colella, and Glaz
though, in their second-order projection method [5], introduceebgticit computation of
this term employing an upwind strategy based on the Godunov methodology develope
Colella [13] which is appropriate for flow at high Reynolds number. Only known value
of the velocityu, the forcing termF, and the approximation t& p from the previous
time step are required. Here, for simplicity, this upwind strategy will be replaced by a qu
“standard” second-order spatial discretization. This simpler approximation will be adequ
at moderately high Reynolds number flows which are in sight in future applications (up
500 or so, e.g., as in the blood flow in the heart chambers). The detailed computation o
nonlinear advection term is a subject considered in Section 6. For the moment, this ter
assumed to be known.

Instead of trying to solve Egs. (9)—(10) directly, we use the following iterative approac

nt3,m-1

) —[(u- V)U]m_% + FT (11)

usm _— gn N Vpn-&-%,m—l _ ﬁA(u*,m_}_ un
At P P 2
ygntim _n Vpn+%,m usm _ yn Vanr%,mfl

= 12
At + P At + 0 (12)

V.uttim =, (13)

wheremis the iteration number. Note that (11) is an implicit system to be solved f8rfor
which no constraint of incompressibility is imposed. Moreover, the pressure used is knc
from the previous iteration. Also, note that the right-hand side of (12) is the left-hand s
of (11).

For the particular problem considered, the evaluation of the ferall depend on the
unknown value of the velocity" and, hence, it will depend on the iteration number in
manner that will become clear in the next section.

3.2. Fluid—Boundary Interaction Equations

Since its introduction by Peskin [26, 27] a serious issue of numerical stability has haur
the Immersed Boundary Method, whose origin is the stiffness introduced into the probl
through the elastic properties of the immersed boundary.

The elastic force distribution (3) can be computed fiéf) the boundary configuration
at the beginning of the step from time leveto time leveln + 1. But, if the boundary is too
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stiff or if the time step is too large, thisxplicit formulation of the method typically leads
to “explosively” unstable results. One way of improving the stability of the method is
compute the elastic force not frad? but fromX*, an estimatef X"+, the configuration of
the immersed boundary at the end of that time step. This is referred to@sgioximately
implicit formulation of the Immersed Boundary Method and was first introduced in [26
This formulation improves, but does not completely eliminate, the stability problems of t
method.

Tu and Peskin [38] compared the stability properties displayed by three different forn
lations of the Immersed Boundary Method for a steady Stokes flow. They used the expl
the approximately implicit, and a third formulation, which wamplicit in the computation
of the elastic force densifiys, t); that is, the elastic force density was computed from th
boundary configuration at the end of the time stép'?, but applied to the fluid at the
boundary configuratioX" corresponding to the beginning of the time step (flly im-
plicit schemeX"*+! would be used for both purposes). Significantly more expensive th:
the others, this last implementation presented excellent stability properties, seeming t
unconditionally stable for the model problem used.

In the context of the full Navier—Stokes equations, Mayo and Peskin [24] introduced t
implicit schemes for the Immersed Boundary Method: one implicit only in the elastic force
as in the previous work done by Tu and Peskin mentioned above, and the other one
implicit. The former, despite having a region of stability greater than the approximate
implicit scheme, still was not unconditionally stable. On the other hand, the fully implic
scheme presented was always able to preserve the stability. In all cases, the model prc
used was the two-dimensional analog of an elastic spherical balloon, described in Secti

Here, yetanotherfully implicit scheme is presented. The Crank—Nicholson schem
(9)—(10) used in the time discretization of the Navier—Stokes equations requires that
forcing term, appearing in the momentum equations (9), be computed at half-time leve
the average oF" andF"*! is used then aewimplicit form of the Immersed Boundary
Method can be proposed. To (9)—(10) one adds

Xn+1 —_Xn 1

=3 / [u"s(x — XM + u™1s(x — X" H] dx (14)
Q
2 2xn+l
[SUL /0 ¥ s(x — X" ds, (15)
and therF"+1/2 s defined as
FIH-% _ }(Fn + Fﬂ+l) (16)
=5 ,

whereF" is obtained simply by replacing+ 1 by n in (15).

These equations, together with Egs. (9)-(10), define a non-linear system for the unkn
boundary configuratioiX"+* along with the unknown fluid velocity™, which will be
solved numerically by an iterative scheme defined in Section 7.

4. COMPOSITE GRID DESCRIPTION, GENERATION AND REGRIDDING

Peskin and McQueen [28] concluded that the lack of resolution of the Immersed Bou
ary Method has its origin from local phenomena taking place in a neighborhood of 1
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immersed boundary (e.g., boundary layers and singular forces). Roughly speaking, by
plying the method with a second-order fluid solver to a three-dimensional model proble
they observed through numerical convergence analysis that the fluid solver exhibited a «
second-order behavior away from the immersed boundary, the behavior being only f
order when the fluid mesh points close to the immersed boundary were considered ir
analysis.

The existence of local phenomena and the need for more grid points to capture the
geometric details of the immersed boundary suggest a possible remedy to the problerr
application of docal mesh refinement techniquiemploying the composite grids described
by Berger and Colella in [7], refined regions will be covered by a hierarchical sequer
of nested, progressively finer levels-1, 2, .. ., lsnest Each level is formed by a set of
disjoint rectangular grid&, x, k =1, 2, ..., n|, that is,

flevell} = | JGix.
k

with G| ; N G x = ¥, j # k (two different grids in the same level do not overlap!), which
have the same mesh spachgand whose sides are aligned in the coordinate directions. £
an exampleflevel 1} = G, ;, whereG, 1 is a global uniform grid covering, the rectangular
domain used in the model problem considered.

Although in gas dynamics problems refinement in time comes naturally along with |
finement in space, this will not be the approach employed in this work. No time refinem
will be used. All grids, in all levels, will evolve together in time, with the time step of the
finest level. In the incompressible case, there is not a finite limit to the speed at which
turbances can propagate in the flow. Since each part of the incompressible flow influel
all other parts instantaneously, it is not clear how different time steps could be used on
different grids.

Grids at different levels in the grid hierarchy must be “properly nested.” This means tl
they must satisfy the following two properties:

1. afine grid starts and ends at the corner of a cell in the next coarser level;
2. there must be at least one leyel 1) cell in some leve(l — 1) grid separating a grid
cell at levell from a cell at levell — 2), in the north, south, east, and west directions.

Figure 2 shows one grid at level Gg 3, two grids at level 2, ;1 andG; », all of them laid
on the underlying uniform grié; 1, which covers the domain completely.

Typically, the setup of a problem to be solved by the Immersed Boundary Method involy
the formulation of the problem on a “physical” rectangular domain, conveniently sized &
made periodic in all the directions. This domain can be discretized using the composite g
described. Level 1 is obtained through the uniform division of the domain into a regu
array of computational cells, whose width and height will be assumed to be thelsgme,
for simplicity. Finer rectangular grid patches forming leVe? < | < lfnhes;, have mesh
spacing

hy

h = . (17)

wherer is therefinement ratiaused (in general, = 2 orr = 4).
Generation of the composite grids depends orflfggying stepthat is, determining first
the cells whose collection gives the region where refinement is to be applied. Througt
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FIG. 2. Grid G;; spans two coarser grids but it is properly nested.

this work, composite grids will be assumed to completely cover the immersed bound
with the finest level. Refinement levels are generated one at a time, starting with the fir
level,lsinesy @and ending with level 2. The uniform grid at level 1 is always the same and t
total number of levels to be used is decided in advance.

A refinement level is always generated by flagging cells in the next coarser level, lev
(I —1). Flagged cells include not only cells in a vicinity of the immersed boundary but al
those needed to ensure that finer grids at leivel 1), if any, will be properly nested in
levell. In summary, the collection of levél — 1) flagged cells is obtained by the two-step
procedure:

1. flag enough cells in a vicinity of the immersed boundary to guarantee that the disci
delta function adopted will have its support completely contained by grids at the level un
construction;

2. to this collection of cells, add all the cells needed to have Igvell) grids properly
nested in level.

Once the collection of flagged cells is obtained, the grids which will belong to level
are generated through the application of the algorithm for point clustering developed
Berger and Rigoutsos [9], which combines elements of both computer vision and patt
recognition theory. The algorithm returns a set of non-overlapping rectangular patches
a given collection of flagged cells, finding the “best” places to cut usiggatures More
precisely, vertical and horizontal signatures of a functf@r, y) are defined respectively
as

H(X)=/f(x,y)dy
y
V<y>=/f<x, y) dx.

If the function f (X, y) is understood as a binary function which assumes the value 1
the flagged cells, and O at the other cells, the key idea of the algorithm is to look for 1
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zero crossings in the second derivative of the signatdres andV (y) (inflection points),
since they detect the transitions from flagged to non-flagged regions. The best plac
introduce an edge is indicated by the most “prominent” inflection point. For details, t
interested reader should refer to [9]. This procedure is performed for each level until all
grid patches have been generated.

Composite grid regridding is performed always when the distance from an immer:
boundary point to the border of the finest level is less than an allowed minimal distan
This minimal distance depends on the size of the support of the discrete delta function

Several composite grids may be needed during the resolution of a problem. Their nun
depends essentially onthe amplitude of the immersed boundary motion. For problems w
its motion is highly localized, for example, few composite grids will have to be generate

5. DISCRETIZATION IN SPACE

5.1. Location of the Physical Variables

Physical variablea = (u, v) andp are placed in a MAC staggered grid fashion (Harlow
and Welch [18]). In this discretization, the cells covering the domain are considered “m
control volumes” where scalar quantities (e.g., pressure, divergence) are defined at the
centers and vector quantities (e.g., velocity, forcing terms, pressure gradient) have f
vertical component defined at the middle of the horizontal cell edges and their horizol
component defined at the middle of the vertical cell edges. At this point, a note on
convention regarding the spatial indexing of scalar and vectorial quantities seems ftc
appropriate. Given a computational cél j), its left and right midedges will have as
indices(i — % j)and( + % j) respectively, and its top and bottom midedgeg + %)
and(, j — %). Velocity u; j on the cell(i, j) will be defined by

Ui.j = (ui—%ﬁj» vi,j—%),

with the horizontal component defined at the middle of the left cell edge and the verti
component defined at the middle of the bottom cell edge. Although itis arbitrary to assoc
(i, j) with (i — 3, j) and(i, j — 3) in this manner, some such notation is needed if one |
to define vector quantities at all. Since scalar quantities are defined at the cell centers,
indices are simply those defining the cell. It will be also convenient to define auxilia
computational cells underneath fine grid cells as shown in Fig. 3.

On uniform grids, the MAC location of physical variables has been used for a long tir
and has well understood properties. The main reason for its choice in this context
that away from coarse—fine interfaces, it is possible to define conveniently second-o
approximations for the gradient and for the divergence operators, such that the discretiz:
of the projection operator presents excellent numerical properties. It is also possibls
adaptmultigrid methoddor the solution of the pressure Poisson equation resulting frol
substituting (13) into (12).

The disadvantages of this approach include the fact thatitis not clear how to obtain hig
order discretizations of the nonlinear advection terms preserving the numerical stabilit
regions of steep gradients without introducing either nonphysical oscillations or unneces:
dissipation. This is especially true for flows at high Reynolds numbers. If all the variab
were placed at the cell centers, for example, variations of the Godunov method coulc
employed more “naturally” [5, 4, 19, 25].
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FIG. 3. Index location and coarse computational cell underneath finer grid cells.

5.2. Divergence, Gradient, and Laplacian Difference Operators

Given velocity and pressure located as explained above, the divergence and grac

operators to be used in (11)—(13) are given by
U,1: —U_1;
(Duyyj = R R B
Pij —Pi-1j Pijj— Pij-1
h ’ h ’

Vij+1 — Vij-4

(18)

(19)

Gpi,j = (

where the time indices were suppressed for clarity. The discretization of the viscous te
in (11) will be given by the five-point stencil

Uiz g+ Uisj+Uig g+ U1 g — 4y
(Lwi; = 2 ,
Vijar TV s F gty 1 — 4
- , (20)
which will be also denoted g u)i ; = ((Lu)i—1/2,j, (Lv)i j—1/2). The difference operators

(18)—(20) are clearly second order away from coarse—fine grid interfaces.

To prevent these operators from being formally redefined at grid borders, an additic
layer of cells is appended around each grid to provide boundary values. These cells
commonly calledghost cellsand their existence is only for programming purposes. Th
values ofu and p at a ghost cell are provided in a manner that depends on whether or |
it coincides with a regular cell belonging to another grid in the same level. If there is su
coincidence, ghost cell values are obtained by simply “importing” them from the siblir
grid, a process often referred to imgection On the other hand, if there is not a sibling
grid to provide these values, an interpolation procedure involving values from coarse
fine grids is employed. Usually, quadratic polynomial interpolation schemes are usec
provide third-order approximate values at the ghost cells. This guarantees second-c
first derivatives but only first-order second derivatives along coarse—fine grid interfac
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Nevertheless, when the flow is smooth near these interfaces, it has been observec
this is enough to furnish a second-order accurate schemeyx{ivorm) [19]. Ghost cells
adjacent to level 1 are set up only through injection by enforcing the periodic bound:
conditions.

Finally, note that difference operators will be also formally kept unchanged on coar
grids by using the coarse computational cells defined underneath fine grid patches. 1
values are defined through interpolations from finer values. Details of all the interpolat
schemes can be found in [34].

5.3. Discrete Dirac Delta

In order to provide the spatial discretization of Egs. (14)—(15) it is necessary to furnis
two-dimensional discrete form for Dirac’s delta function, which will connect the Euleria
formulation used for the fluid with the Lagrangian formulation used for the immers
boundary.

The two-dimensional approximation to the delta function is given by the product

S2(X — X0) = SE(X — Xo) SE(Y — Yo),

where

1 _
SL(x — Xo) = H¢>(X hxo), (21)

is an approximation for the one-dimensional delta function, withe continuous function

t5-3r|—/-31—-Irp2+1, 05<|r|<15
¢ = A+ V=32 + D), rl <05 (22)
o, otherwise

wherer = (X — Xg)/ h. The functionp was not chosen arbitrarily. Actually, it is determined
by requiring that a certain set of properties be satisfied by the discrete version of Dir
delta function. In particular, the set of properties used to determine this approximation wi

1. ¢(r) is continuous for all real numbers
2. ¢(r)=0, |r] = 15

3. 00 —i)=1, Vr;

4.5 =@ —i)=0, vr, and

5 2o —]? =3, vr,

where all the sums are performed for the integessich that-co < i < +o0.

A novel feature of the delta function defined above is that the size of its support is th
meshwidths in each space direction. Previous immersed boundary computations have
delta functions whose support was four meshwidths in each direction.

Delta functions previously employed [26, 30] obeyed a list of properties much like tho
above but with certain differences. In both [26] and [30], Property 3 was stronger: It requil
that the corresponding sums overdd and over even each be equal tg2. The reason for
this, and why we can do without it here, will be discussed below. In [26], Property 4 w
not used. This led naturally (albeit non-uniquely) to a cosine shaped delta function w
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a support of four meshwidths in each space direction. In [30], Property 4 was added,
the stronger form of Property 3 was still retained. This led to a uniquely determined de
function that was remarkably close quantitatively to the cosine shaped delta function, e
though the cosine function does not satisy Property 4 exactly. Here we keep Propert
but achieve a delta function with smaller support by using Property 3 in the (weaker) fo
stated above.

The reason why the stronger form of Property 3 was needed in previous work is that
Navier-Stokes equations were discretized employing gradient and divergence differe
operators whose composition led to what looks like a “stretched” version of the us
five-point stencil for the Laplacian. Roughly speaking, as a consequence, four indepen
sets of equations had to be solved in the projection step (see [19] for further commer
When that happens, the stronger form of Property 3 must be imposed so that eact
of equations receives equivalent contributions coming from the elastic force, with mq
grid points needed to satisfy all requirements. In this case, the derivation leads to a c
function which is usually four-cell supported [30]. The new, three-cell supported de
function became possible because gradient and divergence operators were discretize
MAC staggered grids. This approach naturally avoids any decoupling of equations in
projection step, making no extra property necessary.

The five properties above uniquely determine the fungtiand hencé}. Remarkablyp
turns out to have a continuous derivative, though this condition was not explicitly impos
By Property 1 above, there will be no “jumps” in the interpolation step (14) and in tt
spreading stefil5) (interpolation of the velocity to and spreading of the force from immerse
boundary points). Property 2 guarantees that the discrete delta function has finite sup
three cells wide in this case.

In the force-spreading operation, Property 3 guarantees conservation of momen
Properties 3 and 4 together guarantee conservation of angular momentum, and tha
interpolation of linear functions will be exact, that is, smooth functions are interpolated
second-order accuracy.

Property 5 arises from considering how the force due to an immersed boundary p
influences the motion of that same point, and from requiring that this influence be the s
regardless of the position of the immersed boundary point relative to the mesh. Fur
explanations are found in [26, 30]. Note that the constagtit the fifth property is not
arbitrary. It can actually be obtained by setting- 0.5 and by performing some algebraic
manipulations on the set of properties. Similarly, in the condiign = Ofor|r| > 1.5, the
constant 1.5 is not arbitrary. It is the smallest constant consistent with the other conditic

Finally, it is important to remember that the immersed boundary is covered complet
by grids in the finest level, which is made large enough to contain the entire support of
discrete Dirac delta.

5.4. Fluid—Boundary Interaction Equations

The full discretization of the fluid—boundary interaction equations (14)—(15) is given |

n 2 n N+l ¢2 n+1
XE+1_XE h2 u. 1 ‘Sh(XF%,]— _Xk> +ui_%yj8h(xi7%’j _Xk )

S SRt
At 2 v 8B (Xi 1 = XR) oM R (x 1 — XpT)

(] ij—3 ij—3 ij—3

(23)
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™ Ng D+D Xn+l)8|,21<xi_% J _ XI'H-].)
Ft = TOASZ ,
h

: 24
(DS Ds Yt )8R (% i1 — XiH) ey

i

whereAs = Lg/Ng, Lg andNg are the length and the number of discretization points ¢
the immersed boundary, respectively, and

X(s+ As) — X(s)

+ —

(DgX)(s) = AS (25)
_ _ X(s) = X(s— As)

(DSX)(S) = s (26)

are difference operators defined along the immersed boundary. Note that since the imme
boundary is a simple closed curve in the model problem considered, it was found to be r
convenient to identify the first poink (s;), with the last point, say{ (Sng+1)-

The discretizations of the integrals in (14)—-(15) were based on the application of
Trapezoidal Rule for space variables. In what follows, it will be convenient to introdu
some simpler notation to alleviate both the indexing on staggered grids and the some
cumbersome representation of the discretized interaction equations (23)—(24). First, le
spreading operatioperformed at tim¢" in (24) be described h§", which will be given by

ASY D p1(80 87 (%) — 5€1) — XR)

h
2 27)
ASYy #2(s) 87 (% — S&) — X§)

(S"p)(xij) =

for any vector fieldr = (¢1, ¢2) defined on the immersed boundary, wherande, are the
unit vectors in thex andy directions, respectively. Note that the conventigh= X"(s,)
was used, wherg, = s; + kAs, with s, some origin arbitrarily chosen for the immersed
boundary parametrization.

Similarly, letS*", denoting thenterpolation operatiorperformed at tim&" in Eq. (23),
be defined by

hzZi,j Wl(Xi_% j)(Sﬁ(xi_% = XP)
hZZi,j ZIC 2) h( _XE)

for any cell-edge vector fielgh = (1, ¥,), whereyr; andir, are grid functions defined at
the middle of the vertical and horizontal cell edges, respectively.

In terms of the spreading and interpolation operators (27) and (28), Egs. (23)—(24)
be rewritten as

(S™MP)(s0) = (28)

X = XD 4 o [(8*“u )(S) + (S (s0)] (29)

Fn+l [T Sn+1 ( D+ D Xn+1)] (Xi,j ) (30)

6. DISCRETIZATION OF THE NONLINEAR ADVECTION TERM

The term [u- V)u]"*/2 appearing in (9) is computed explicitly in time. A quite standarc
second-order spatial discretization of this term will be applied to a predicted value of
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velocity field at timet"*%/2. Following Bell, Colella, and Glaz [5], the predicted velocity
field will be obtained by the Taylor expansion

n+1 At
U = Ul ol

where the time derivative; can be computed with help from the Navier—Stokes equation
Thus, one obtains

1 At Gp". F
uppt =ul + 2{ML“i",J [Vl - LJ}’ (31)
P P P
for the predicted velocity field, which can be rewritten as
n+3 n n n
Ui —uly , GRY o n
: : = =—Lu'. —[(u-Vyull'. + —=. 32
At/2 o = b sVl + = (32)

Note that besides the velocity at the half time level, the pressure gradient at tnadso
not known. By imposing the requirement

D- un+% =0, (33)
one can solve (32)—(33) simultaneously for the velocity field and for the pressure.
Since the vectors andF appearing on the right hand side of (32) are known at tim
t", the computation of the predicted velocity fielttr1/? depends on the definition of the

spatial discretization for the nonlinear advection term at tifné\ standard second-order
discretization is (see [31])

U'_;,_l" _u._§,4 _ U'_l,'+1—u‘_l,'_1
[(u-V)uli; ~ (ui—%i(IZJZhIZI)‘F”i_%,j( i—3. - i—3. )

_ Vig,j-1 — V11 Vijj+4 —Ui,j-3
(), (2550

which is not in conservation form, and where the time indicegere suppressed in favor
of clarity. In the approximation (34),

L e B T e DL B Ui

1—3.] 4

_ Ut +Uigj ot U jatUig
ij—3 4 .

The numerical solution of the system (32)—(33) is obtained on composite MAC-grids
a discrete projection method, similar to the one described in the next section. Once
system has been solved, the computation of the nonlinear advection(ter)u]"+%/? is
then completed by again applying (34), this timesfdY/2.
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7. NUMERICAL SCHEME AND SOLUTION ALGORITHM

7.1. Set of Discretized Equations

The implicit scheme proposed that (9)—(10), (14)—(16) can be solved numerically throt
an iterative approach. Givénitial guesses Gp/29, X109 andrF"*+%2.0 the new state of
the system(X"+1, u"?), is computed by

utm _gn G +1 m-1 usm _ yn Fn+1,mfl
LG “L() -t + " (35)
At o o 2 P
gn+Lm _gyn Gpn+%.m gem _ yn Gpn+%.,m—l
= 36
At + P At + o (36)
D.u™tm=po (37)
[I _ )\'I'H-l,m—lA] (Xn+l,m _ xn+l,m—1)
At At
= X" ——syn — Xn+1,m—1 _ _S*n+l,m—1un+1,m 38
v ( . (38)
Fn+%,m — %(Fﬂ + Fn+1,m)
= 19[57(Dg Dy X") + S™Him(Dy Dy XL 39
- E[ ( s s ) + ( s Ys )], (39)

wherem, m > 1, is the iteration number within each time step.

In the discretized form of Navier—Stokes equations (35)—(37), the difference operat
G, L, andD are those defined by (19), (20), and (18), respectively. The elastic force dis
bution, the pressure gradient, and the nonlinear advection term are treated as source
in (35), the last computed by (34) from a predicted velocity fielthat/’?, as explained in
the previous section.

The fluid—boundary interaction equations (38)—(39) provide updates for the immer:
boundary position and for the elastic force distribution. Equation (38) is a reformulation
Eq. (29) in terms of a fixed-point iteration, similar to that proposed by Mayo and Pesl
[24], in whichA"1™-1 s a diagonal matrix obtained by

)Ln+l,m—l — S*n+l,m—18n+1,m—ll’

whereS andS* were defined in (27) and (28)(s) is a constant function assuming 1 on
every immersed boundary point, aAds a notation introduced for the difference operatot

T
A= (Omz> DS D;,
0

with D and D given by (25) and (26).

For the model problem used, the operatior{ A A] in (38) has a periodic—tridiagonal
structure. Further motivation for the choice of this operator can be found in the work
Mayo and Peskin [24].
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7.2. Projection Method for Composite MAC-Grids

In practice, the solution of (35)—(37) is computed in three steps by a projection meth
specially designed for composite MAC-grids. First, in fiegabolic step one must solve
the implicit parabolic equation (35),

1 1 1 m—
) GRS g

Ut Ll nedmer g (U T
———+-06p ==—L =
At 0 ’ 0 2

for the provisional velocity".
Second, in thelliptic step one must solve the pressure Poisson equation

1 _ n+im ui*'jm - Uinj 1 neim-a
D-{-Gp 2 =D.|————+-Gp;? 40
(et -0 (T dei) o

with periodic boundary conditions, which is obtained by imposing the incompressibili
constraint (37) to (36). Observe that away from the coarse—fine grid interfaces, the pro
of the difference operatoid andG gives the usual five-point stencil for the Laplacian

In the third step, to complete the projection, the provisional velocity ﬂé[a is decom-
posed using the pressure just obtained in the second step,

At 1 1
yntim _em —G(p”*i*m _ pn-rz,m—l)I -

i.j

giving as a resulu"™1™ a discretely divergence-free vector field defined on the entir
composite MAC-grid. This step will be referred to as ttecomposition step

The simplest possible way to solve (35) is by a Gauss—Seidel method which requi
on composite MAC-grids, the definition af-™ on coarse cell edges underneath fine gric
patches. For accuracy, they are definedilyic interpolatiorof the values in the next finer
level above. Employing periodic boundary conditions on level ufdf, one can rewrite
the Gauss—Seidel Method on composite MAC-grids in recursive form as

CMACG-GS(levell)
if levell > 1then
1. define u~™ on levell — 1 covered cells by cubic interpolation
2.set up u~™ on ghost cell edges
3. perform one Gauss—Seidel relaxation
4. CMACG-GS (levell — 1)
else
5. perform one Gauss—Seidel relaxation
end
end CMACG-GS

This procedure is repeated for levelarying fromlsnesito 1 until the residual is “small” in
all the grids, for all levels. Recall that all difference operators are well defined, even on ¢
borders, since ghost cells were appended to them. Equation (35) is well conditioned, ust
with 15 to 20 repetitions needed to drop the residual to® I the composite MAC-grid.
The elliptic step is the most difficult step of all. Equation (40), unlike the precedir
equation, cannot be solved numerically by the Gauss—Seidel method since this Poi
equation is poorly conditioned; sometimes, thousands of iterations are needed for
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method to converge. Instead, the multilevel-multigrid method described by Minion in [2
is employed. It solves very efficiently Poisson equations on composite MAC-grids and v
be described in the following.

The implementation of a residual-correction multigrid strategy depends essentially on
relaxation on individual grids, on the definition of residual problems, especially at coar:
fine grid interfaces, and on the transfer of information upward and downward between
successive levels. Forthe moment, the refinement ratio between levels will be supposed
equal to two. This is not essential but it will make the exposition of the multilevel-multigri
strategy clearer.

The problem to be solved on a composite MAC-grid is

D- (%Gp) = D - (rhs), (42)

whererhs is just the right hand side of (36), with periodic boundary conditions. All indice
were suppressed for a simpler notation.
The residual—correction problem on a grid at the finest level is defined by

D. <1G1p> =r=D-(ths)—D- <1Gp>, (42)
o o

wherer is the residual ang the correction.
Given an initial guesg°, relaxation is performed on each individual grid by the Gauss
Seidel Method in a red—black fashion,

K K k K 2
Vie H¥ice T ¥ijea T ¥i -1 — i

- (43)

K+l _
Vi =

whereh is the mesh spacing related to the particular grid considered. Since ghost cell
the grid borders provide boundary values, again the relaxation can be extended to t
cells, where (43) can be formally applied.

To define the residual problem on the next coarse level, one must first compute the resi
of the residual problem (42) at the finer level,

Fﬁr—D~(;Gw>=D~<rhs—l1)G(p+¢)>, (44)

and then, through eestriction operationtransfer it downward onto the next coarse level,
defining, in this way, the coarse residual problem

D. (ie&) — R[], (45)

wherey is the coarse correction arig|_, is the restriction opertor.
On uniform grids, normally?| _; is performed bysimple averaggethat is,

Foi 2j + Fai12) + Foipa2j41 + T2 2j41 (46)

Pl =Ri_[flia= 2 ,
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which preserves the homogeneous Neumann solvability condition

Z D- (I’hS)i,j =0, (47)

i

present in all the residual problems (and naturally satisfied under periodic bound
conditions).

On composite grids, in order to have (47) satisfied on level 1, special care must be ts
at coarse—fine grid interfaces; restriction (46) cannot be performed exactly as written.
residual computation (44) suggests another way of performing the restriction on compo
grids which will preserve the solvability condition (47). Instead of simply averaging cel
center values liké onto parent cell centers, the restriction is performed on the cell-ed
values fhs — %G(p + )] by simply averaging them onto the parent cell edges they cove
(also represented bR| ;). This procedure can be viewed as a flux correction step. T
complete the definition of the restriction operation for composite grids, on uncovered ce
one computes the residual as in (42).

After reaching the coaresest level, correctignsire transferred upward to finer levels
through the interpolation operator, which is given by a bilinear interpolatioW.-éycle
schedule is used to visit all levels, including physical levels.

The basic algorithm used for the multilevel-multigrid method is

MMM (levell)
if levell > 1then

1. relaxation
1.1 set up)' on ghost cell centers
1.2 relax on residual problem - (%Gw') =r! v, times

2. flux correction
2.1 set upy' on ghost cells
2.2 correct flux at grid border€y' < Gp 4 Gy

3. residual computationon levell — 1

D (rhs~! - 1Gp-?) on uncoverd cells
r'=1 ’

D-Ri_y[rhs' = 2G(p' +y")]  oncoverd cells

4. MMM (levell — 1)
5.interpolate andadd coarse correctiony' < ' + 7 _,[y'Y]
6.relaxon D - (%Gl/fl) =r! v, times
7.add correction to solution:p' < p' + '

else
8. perform one V-cycle on residual problem

end

end MMM

For the problem presented here, the procedure above is repeated until the maximum res
in all the grids, for all the levels, is less than£0

More details on the multilevel-multigrid method employed, including details on tr
interpolation stencils and on the case when the refinement ratio is four, can be found in
works by Minion [25] and by Roma [34].
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7.3. Initial Guesses

Finally, the initial guess for the pressure gradient at tifité’? is given by

0 n=0
Gpi0=J" : 48
P Gp”‘%, n>1 (48)

and for the elastic force distribution, one can use
En+3.0 _ %(Fn 4 FL0)
Fn+1,0 — TOSrH—l,O ( D;— DS—Xn+1,0) (49)
Xn+1,0 — Xn 4 %(S*nu” 4 S*r‘H—l,—lur'H-l,—l), (50)
whereX"1 -1 andu™1 -1 are obtained through the expressions

xn+l,—1 — XI"I + Atsnun

1-1 i P Gp
Uttt =0 4 At =" + At =L = [(u- VU] 4 — - ~
g o o

8. RESULTS

This section presents the numerical results obtained in computations performed with
adaptive version of the Immersed Boundary Method, applied to the model problem descr
in Section 2. Briefly, the immersed boundary is given by a simple closed curve, the tv
dimensional analog of an elastic spherical balloon, filled with the same fluid present outs
Its motion is driven by the elastic force acting on its wall (8), for which the non-negati
constanfT, was taken as 1.0 dyn/ém

At time t = 0.0, the initial position of the immersed boundary was an ellipse aligne
in the coordinate directions with horizontal semi-aais: 0.28125 and vertical semi-axis
b=0.75x a, centered at (0.5, 0.5); initially, the fluid was at rest, thatuix, 0) = 0.0,
xe Q2 =]0, 1] x [0, 1], @ doubly periodic. Under these conditions, if the integration time
were long enough, the immersed boundary would tend to a circle, its equilibrium confi
ration, in a damped oscillatory motion.

In all the computations that follow, the mass dengithas been set to 1.0 g/énthe
viscosityu to 0.01 g/(cm s), and the immersed boundary, as mentioned previously, has k
uniformly covered by grids at the finest level. Takibg = 27 /(a2 + b?)/2 as the length
of the immersed boundary at timie= 0.0, the number of immersed boundary points wa:
setto

L
Ng =22

hfinest

(51)

which gives an average density of two immersed boundary points per meshwidth. T
density was kept constant in all the runs, whether uniform or composite grids were use
the simulations, with the total number ofimmersed boundary points adjusted appropria
and with their location the same for grids with the same finest meshwidth.
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With the initial conditions and physical parameters selected as above, the immer
boundary position was integrated up to titne 0.5, when its first oscillation was almost
complete. During this motion, the minimum length assumed by the major axis was ab
75% of its initial length. The time steps were given by the hyperbolic restriction

At = ¢ Ninest (52)
l[Ull oo
with constantC = 0.5.

Before any numerical results for the state varialifésu) are presented, a description
of how norms on uniform and on composite grids were computed will be given. For t
immersed boundary (s¢) = (X1(S), X2()), 1 <k < Ng, the discretized. ,-norm is given
by

Ng 1/2
IXll2 = (Z (X%(s0 + XS(&))AS> :

k=1

where As= hsnesy/2 is approximately the distance between two consecutive immers
boundary points.

For the fluid velocity, there are two different discretizations of the doiftain a staggered
grid: QN, where the first component is defined, is the union of all midpoints of vertic
edges, an®", where the second component is defined, is the union of all midpoints of t
horizontal edges. Bearing that in mind, one sees that theorm of the fluid velocity is
given by

1/2
lullz= | > ufa+ > vib | .
ieq jeh
where
H2, on the coarse cell edges
a = { H?/r?, on the fine cell edges (53)
H2(r +1)/(2r?®,  onthe coarse—fine interface edges

with r the refinement ratio between levélandl + 1, andH the mesh spacing of levél
The weights; are defined in the same way.

The first series of numerical results, displayed in Table I, were obtained by applying
iterative method (35)—(39) on folN x N uniform grids,N =16, 32, 64, and 128, and then

TABLE |
Uniform Grid Results

Rnest 1/16 1/32 1/64 1/128

N 16 Ratio 32 Ratio 64 Ratio 128

[Xn — Xosellz  1.166x 102  8.61  1.355¢10° 216 6.265<10* 3.19  1.961x 10
lun — Ussgll.  1.300x 101 2.69  4.833< 102  3.09 1564<102 341  4.582 107
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by comparing the immersed boundary position and the fluid velocity at the finatl tinde5
with a finer solution obtained on the uniform grid with= 256.

Further remarks on the norm computation must be made at this point. From one test
to the next finer one, the set of immersed boundary points was increased by including a
point midway between each two previously existing points. By adopting this procedu
the density of immersed boundary points per meshwidth was kept constant from one «
to the next finer one, and the norms involving the immersed boundary points could
computed simply by using the points which were “common” to both, the case being r
and the 256« 256 case (these common points occupied the same position at the ini
time; the other points required on the finer grid were simply neglected). Also, note that
fluid velocity is computed at different points for grids with different meshwidths; so, befo
computing the norms of their differences, the solution defined on the finer grid had to
interpolated to the coarser grid points (second-order accurate interpolation was used).

For each time step, the method was allowed to iterate until the difference between
consecutive updates of the immersed boundary position at the end of that time step sati
a certain prespecified convergence criterion which, kept fixed for all the cases, was ch
as

IXTEEM - XPEEL < (0.5 x 107 hasg, (54)

wheren denotes the current time stepthe current iteration number (within the particular
time stepn), andhysg the meshwidth of the 256 256 uniform grid.

Since the comparison of the results was made with a solution which was not as fin
ideally it should be, one cannot expect convergence ratios of two and four to mean fi
and second-order accuracy, respectively. Instead, assuming that the numerical soluti
the immersed boundary position has an asymptotic expansion in powerthefaccuracy
g of the method can be estimated, for example, from the ratio

(55)

21

o (0~ (s _ (201
ose =Xl ™ [[(8)Ea ~ (k) Eall ’

whereE, is a coefficient which may depend on time but noto&stimates can be similarly
derived from the other uniform grid results, giving

X032 — Xasell2 (23q - 1) (56)
1 X064 — X2s56ll2 29 -1

X062 — Xosell2 (qu - 1) (57)
I X128 — Xosgll2 20-1)°

Note that the same estimates will hold if similar conditions are assumed for the fluid veloc

Using expressions (55)—(57), one can obtain estimates for the convergence ratio:
g=1 andg =2, and then compare them with the computed convergence ratios contail
in Table I. Table Il shows these estimated convergence ratios for first- and second-o
accurate methods. A comparison between the computed convergence ratios, display
Table I, and the estimated convergence ratios, displayed in Table Il, shows that the me
exhibits a first-order asymptotic behavior for both state variables i thgorm.
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TABLE Il
Estimated Convergence Ratios for First-Order ¢ =1)
and Second-Order = 2) Accurate Methods

Order Ratio (16—32) Ratio (32—64) Ratio (64—-128)

q=1 2.14 2.33 3.00
q=2 4.05 4.20 5.00

The next series of numerical results were obtained by employing the adaptive multile
approach to the same model problem. Composite grids were generated by flagging a s
by seven coarse-cell neighborhood around each of the immersed boundary points.
avoided too many regridding steps by making sure that the boundary points would h
enough room to move for several time steps. Also, the border of a fine level was maintai
three coarse cells away from the border of the next coarser level (a more stringent crite
than would be sufficient for grids to be properly nested). These numbers were selected
few numerical experiments and may be case dependent. By following this procedure,
cells so flagged served as input to the grid generation routines which, with at least 759
efficiency, produced the fine grids.

On composite grids generated as explained above, the regridding process took place
when an immersed boundary point moved fewer than four cells away from the border of
finest level. This guaranteed that there would be at least two cells between the border o
finest level and the support of the discretized delta function, a precautionary measure t:
to prevent errors in the fluid velocity at coarse—fine interfaces from affecting the computat
of the immersed boundary velocity during the interpolation step. Note that if discretizatic
with wider supports were used for the delta function, the equivalent regridding criteri
would require more than four cells. For example, if a four-cell supported delta functi
were used, regridding would have to take place when an immersed boundary point mc
fewer than five cells away from the border of the finest level to keep this border at least t
cells away from the delta function support.

In the first two numerical columns of Table IIl, one extra level refined by the ratio 2 w:
added to base levels of 3232 and 64x 64 cells. Briefly, the resulting composite grids will
be denoted respectively by “32(L2R2)” and “64(L2R2),” whose reading, for example f
the first case, is “32 cells in each direction in the base level, two levels altogether, refinen
ratio 2.” The degree of accuracy obtained was comparable to that obtained forxh&i64
and 128x 128 uniform grids respectively (compare with the last two columns of Table I

Note that only grids at the same level were used to cover the immersed boundary
lowing for its norms to be computed in the same way in which they were computed
the uniform grids. For the norms involving the fluid velocity, the solution obtained on tt
uniform 256x 256 grid had to be first interpolated to the composite grid points under co
sideration.

The last two columns of Table Ill illustrate in more depth the potential of this adapti
multilevel approach. Due to the localized refinement around the immersed boundary, re:
comparable to those obtained on a uniform grid ¥2B8 were obtained on the composite

1 Efficiency was measured by the ratio between the area of the input tagged region over the area of the o
generated grid.



ADAPTIVE IMMERSED BOUNDARY METHOD 531

TABLE Il
Composite Grid Results

Rinest 1/64 1/128 /128 /128

N 32(L2R2) 64(L2R2) 32(L3R2) 32(L2R4)

IXn — Xosellz  6.186x 104  2.016x 10* 1.951x 10* 1.951x 10
lun — Usssls  1.569x 1072 4.598x 10°  4.637x 103  4.640x 107

grids 32(L3R2) and 32(L2R4). In all three cases, the mesh spacing around the imme
boundary was the same, equal #128. Figure 4 shows all the composite grids used in thi
case 32(L3R2).

Compared to the original regridding strategy employed in [34], when regridding w
performed according to a fixed schedule every few time steps, the current strategy
generate up to less than 10% of the total number of composite grids needed previously.
main reason for such improvement is that, now, the total number depends essentiall
the amplitude of the immersed boundary motion. Note that if the code is to adapt base
a nonsmooth flow field elsewhere, and not just around the immersed boundary, it may
necessary to employ both the current and the previous strategies together, the final dec
being problem dependent. Nevertheless, when the Reynolds number is not so high (5
so, e.g., the blood flow in the heart chambers), the flow is not expected to be honsm
away from the immersed boundary; the natural choice for the regridding strategy, in
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FIG. 4. Composite grids and boundary positions used for case 32(L3R2).
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case, is the one introduced here. Less than 0.5% of the total running time was spel
recompute and move the composite grids.

Although composite grids and uniform grids with the same mesh spacing around
immersed boundary exhibited comparable resolutions, a considerably smaller numbe
state variables had to be defined for composite grids. For example, the solution of the prol
on the uniform grid 12& 128 required the definition of the state variables on 16,384 cell
while an equivalent resolution obtained on the composite grid 32(L3R2) required ol
about 45% of that number of cells, distributed among about 10 grid patches (not taking |
account ghost cells).

The number of computational cells plays an important role. By requiring fewer comg
tational cells than the uniform grid Immersed Boundary Method, this adaptive approz
can be used to solve problems with resolutions which could not be achieved previously
uniform meshes due to the prohibitive amount of computer memory required.

For problems that can be tackled by both approaches, where the amount of memo
not the issue, the smaller number of computational cells needed by the adaptive appr
suggests that computer time might be saved for, in this case, the solution of smaller sys
will be required. Since the current adaptive code has not yet been optimized for performa
it remains to be seen whether savings in running time can in fact be achieved by
methodology described in this paper.

9. CONCLUSION

By combining the Immersed Boundary Method with an adaptive mesh refinement, ¢
obtains a multilevel version of that method with self-adaptive capabilities.

This approach is tested for a particular two-dimensional model problem, for wbich
significant differencés found between the solutions obtained on a mesh refined loca
around the immersed boundary, and on the associated uniform mesh, built with the resolt
of thefinest level

A Crank—Nicholson type of scheme is the basis for the second-order projection met
employed to solve the Navier—Stokes equations on composite MAC-grids. The nonlin
convection term is explicitly computed at half-time levels with simple edge-centered diff
ence stencils, suited for Reynolds numbers in the range of 10 to 100. A rather sophistic
multilevel-multigrid method is used to solve numerically the pressure Poisson equatiol
the projection step.

An implicit version of the Immersed Boundary Method is employed to free the meth
from its time-step restriction

At = O (N s

which can be intolerable if several levels are used. The elastic force distribution was
troduced as a forcing term in the parabolic step and the immersed boundary position
updated by the Trapezoidal Rule.

Although formally second-order accurate, in practice, the method is only first-orc
accurate (overall accuracy) due to the nonsmooth flow field near the immersed bot
ary. Another numerical aspect specific to this implementation of the Immersed Bound
Method is that it employs a discretization of the delta function which is only three-ce
supported.
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The new regridding strategy made the total number of composite grids generated
pendent on the amplitude of the immersed boundary motion. Compared to the orig
regridding strategy employed in [34], when regridding was performed according to a fix
schedule every few time steps, the current strategy can generate up to less than 10%
total number of composite grids needed previously. For applications where the Reyn
number is not so high, the flow is expected to be smooth away from the immersed bounc
and the natural choice for the regridding strategy is the one introduced here.
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